
  

Hashing and Sketching
Part One



  

The Magic of Hash Functions
● Last week, we explored how to reduce the 

number of bits used by a data structure.
● In many cases, there are hard limits on how 

space-efficient any deterministic algorithm can 
be, but randomized algorithms can use 
shockingly few bits.

● This week explores how to use hash functions 
to seemingly achieve the impossible, as long as 
we’re okay with answers that are 
approximately correct most of the time.



  

Outline for Today
● Hash Functions

● Understanding our basic building blocks.
● Frequency Estimation

● Estimating how many times we’ve seen 
something.

● Probabilistic Techniques
● Standard but powerful tools for reasoning 

about randomized data structures.



  

Preliminaries: Hash Functions



  

Hashing in Practice
● Hash functions are used extensively in 

programming and software engineering:
● They make hash tables possible: think C++ 
std::hash, Python’s __hash__, or Java’s 
Object.hashCode().

● They’re used in cryptography: SHA-256, HMAC, 
etc.

● Question: When we’re in Theoryland, what 
do we mean when we say “hash function?”



  

Hashing in Theoryland
● In Theoryland, a hash function is a 

function from some domain called the 
universe (typically denoted 𝒰) to some 
codomain.

● The codomain is usually a set of the form
[m] = {0, 1, 2, 3, …, m – 1}

h :  → [𝒰 m]



  

Hashing in Theoryland
● Intuition: No matter how clever you are with 

designing a specific hash function, that hash 
function isn’t random, and so there will be 
pathological inputs.
● You can formalize this with the pigeonhole 

principle.
● Idea: Rather than finding the One True Hash 

Function, we’ll assume we have a collection of 
hash functions to pick from, and we’ll choose 
which one to use randomly.



  

h

Families of Hash Functions
● A family of hash functions is a set  of ℋ

hash functions with the same domain 
and codomain.

● We can then introduce randomness into 
our data structures by sampling a 
random hash function from ℋ.

● Key Point: The randomness in our data 
structures almost always derives from 
the random choice of hash functions, 
not from the data.

Data is adversarial.
Hash function selection is random.

● Question: What makes a family of hash 
functions  a “good” family of hash ℋ
functions?

ℋ



  0 1 2 3 4 5 6 7 ... m-1

h

x

Goal: If we pick 
h ∈   uniformly at ℋ

random, then h should 
distribute elements 
uniformly randomly.

y
z

Problem: A hash function 
that distributes n elements 
uniformly at random over 
[m] requires Ω(n log m) 
space in the worst case.

Question: Do we actually 
need true randomness? Or 

can we get away with 
something weaker?



  0 1 2 3 4 5 6 7 ... m-1

Distribution Property: 
Each element should have 

an equal probability of 
being placed in each slot.

Independence Property: 
Where one element is 

placed shouldn’t impact 
where a second goes.

For any x ∈   and random𝒰
h ∈ , the value of ℋ h(x) is 
uniform over its codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent 
random variables.

w
uA family of hash functions  is called ℋ 2-independent (or 
pairwise independent) if it satisfies the distribution

and independence properties.



  0 1 2 ... m-1

For any x ∈   and random𝒰
h ∈ , the value of ℋ h(x) is 

uniform over its 
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent 
random variables.

Intuition:
2-independence means 
any pair of elements is 

unlikely to collide.

Pr [h(x) = h(y )]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y ) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y ) = i]

= ∑
i=0

m−1 1
m2

= 1
m This is the same as 

if h were a truly 
random function.

x
y



  

For more on hashing outside of Theoryland, 
check out this Stack Exchange post.

https://softwareengineering.stackexchange.com/questions/49550/


  

Time-Out for Announcements!



  

Problem Set 2
● Problem Set 1 was due at 1:00PM today.

● Need more time? You can use up to two late days to 
submit either 24 or 48 hours late.

● Problem Set 2 (Succinct Data Structures) goes 
out today. It’s due next Thursday at 1:00PM.
● Dive deeper into succinct rank and select.
● Probe the limits of how far we can compress data 

structures.
● Apply the techniques you’ve learned!

● As always, stop by office hours or ping us on Ed 
if you have questions!



  

Back to CS166!



  

Frequency Estimation



  

Frequency Estimators
● A frequency estimator is a data structure 

supporting the following operations:
● increment(x), which increments the number of 

times that x has been seen, and
● estimate(x), which returns an estimate of the 

frequency of x.
● This is easy to solve exactly using BSTs or hash 

tables, except that we need Ω(n) space simply 
to write down everything we’ve incremented.

● Question: Can we solve this problem without 
using Ω(n) bits of space?



  

The Count-Min Sketch



  

Revisiting the Exact Solution
● In the exact solution to the frequency estimation 

problem, we maintained a single counter for each 
distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a 
counter to each x ∈ . Multiple objects might be 𝒰
assigned to the same counter.

● To increment(x), increment the counter for x.
● To estimate(x), read the value of the counter for x.

11 6 4 7



  

Our Initial Structure
● Create an array of counters, all initially 0, called count. 

It will have w elements for some w we choose later.
● Choose, from a family of 2-independent hash functions 

, a uniformly-random hash function ℋ h :  → [𝒰 w].
● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].

31 42 59 27 58h

w counters

…

Which 
counter?



  

Some Notation
● Let x₁, x₂, x₃, … denote the list of distinct items whose 

frequencies are being stored.
● Let a₁, a₂, a₃, … denote the frequencies of those items.

● e.g. aᵢ is the true number of times xᵢ is seen.
● Let â₁, â₂, â₃, … denote the estimate our data structure 

gives for the frequency of each item.
● e.g. âᵢ is our estimate for how many times xᵢ has been seen.
● Important detail: the aᵢ values are not random variables 

(data are chosen adversarially), while the âᵢ values are 
random variables (they depend on a randomly-sampled hash 
function).

● In what follows, imagine we’re querying the frequency of 
some specific element xᵢ. We want to analyze âᵢ.



  

Analyzing our Estimator
● We’re interested in learning more about âᵢ. A good first step 

is to work out E[âᵢ].
● âᵢ will be equal to ai, plus some “noise” terms from colliding 

elements. 
● Each of those elements is very unlikely to collide with us, 

though. (There’s a ¹/w chance of a collision for any one other 
element.)

● Reasonable guess: E[âi] = ai + ∑
j≠i

a j

w
Frequency of each
other item, scaled

to account for chance
of a collision.



  

Making Things Formal
● Let’s make this more rigorous.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random 
variables as follows:

● The value of âᵢ – aᵢ is then given by

𝟙h(xi)=h(x j)
= {  1 if h(xi)  = h(x j)

  0 otherwise

âi−ai = ∑
j≠ i

a j 𝟙h (x i)=h (x j)



  

E [âi−ai] = E[∑
j≠i

a j 𝟙h(x i)=h(x j)
]

= ∑
j≠i

E[a j 𝟙h(x i)=h(x j)
]

= ∑
j≠i

a jE[𝟙h(x i)=h(x j)
]

= ∑
j≠i

a j

w

≤
‖a‖1

w

Idea: Think of our 
element frequencies

a₁, a₂, a₃, … as a vector
 

a = [a₁, a₂, a₃, … ]

The total number of 
objects is the sum of 
the vector entries.

‖a‖1 = ∑
i

|ai|

This is called the
L₁ norm of a, and is 

denoted ║a║₁:



  

On Expected Values
● We know that E[âᵢ – aᵢ] ≤ ||a||₁ / w. This means that the 

expected overestimate is low.
● Claim: This fact, in isolation, is not very useful.
● Below is a probability distribution for a random variable whose 

expected value is 9 that never takes values near 9.
● If this is the sort of distribution we get for âᵢ, then our estimator 

is not very useful!

0 189



  

On Expected Values
● We’re looking for a way to say something like the 

following:
“Not only is our estimate’s expected value pretty 
close to the real value, our estimate has a high 

probability of being close to the real value.”
● In other words, if the true frequency is 9, we want the 

distribution of our estimate to kinda sorta look like this:

0 189



  

How Close is Close?
● In some applications, we might be okay overshooting by a larger 

amount (e.g. roughly estimating which restaurants people are 
visiting).

● In others, it’s really bad if we overestimate by too much (e.g. 
polling for an election).

● Idea: Allow the client of the estimator to pick some value ε 
between 0 and 1 indicating how close they want to be to the true 
value. The closer ε is to 0, the better the approximation we want.

0 189
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How Close is Close?
● Our overestimate is related to ||a||₁.
● We’ll formalize how ε works as follows: we’ll say we’re okay 

with any estimate that’s within ε||a||₁ of the true value.
● This is okay for high-frequency elements, but not so great 

for low-frequency elements. (Why?)
● But that’s okay. In practice, we are most interested in 

finding the high-frequency items.

0 189



  

Making Things Formal
● We know that

● We want to bound this quantity:

● Let’s run the numbers!

0 189

Pr [âi −ai > ε‖a‖1]

E[âi−ai] ≤
‖a‖1

w



  

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

We don’t know the exact distribution of 
this random variable.

 

Pr [ X ≥ c ] ≤ E[ X ]
c .

However, we have a one-sided error: 
our estimate can never be lower than the 

true value. This means that âᵢ – aᵢ ≥ 0.

Markov’s inequality says that if X is a 
nonnegative random variable, then



  

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w



  

Interpreting this Result
● Here’s what we just proved:

 
● What does this tell us?

● Increasing w decreases the chance of an overestimate. 
Decreasing w increases the chance of an overestimate.

● As the user decreases ε, we have to proportionally 
increase w for this bound to tell us anything useful.

● Idea: Choose w = e · ε-1.
● The choice of e is “somewhat” arbitrary in that any 

constant will work – but I peeked ahead and there’s a 
good reason to choose e here. 😃

Pr [âi − ai > ε‖a‖1] ≤ 1
ε we -1



  

The Story So Far
● The user chooses a value ε ∈ (0, 1). We pick w = e · ε-1.
● Create an array count of w counters, each initially zero.
● Choose, from a family of 2-independent hash functions 

, a uniformly-random hash function ℋ h :  → [𝒰 w].
● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].
● With probability at least 1 – ¹/ₑ, the estimate for the 

frequency of item xᵢ is within ε · ||a||₁ of the true 
frequency.

31 41 59 26 58h

w = O(ε -1) counters

…



  

The Story So Far
● We now have a simple estimator where

● This means we have a decent chance of getting an 
estimate we’re happy with.

● Problem: We probably want to be more confident 
than this.
● In some applications, maybe it’s okay to have a 63% 

success rate.
● In others (say, election polling) we’ll need to be a lot more 

confident than this.
● Question: How do you define “confident enough”?

Pr [âi− ai > ε ‖a‖1] ≤ e−1



  

The Parameter δ
● The user already can select a parameter ε tuning the accuracy 

of the estimator: how close we want to be to the true value.
● Let’s have them also select a parameter δ tuning the 

confidence of the estimator: how likely it is that we achieve 
this goal.

● δ ranges from 0 to 1. Lower δ means a higher chance of getting 
a good estimate.

0 189



  

Our Goal
● Right now, we have this statement:

 
● We want to get to this one:

 
● How might we achieve this?

Pr [âi−ai > ε‖a‖1] ≤ e−1

Pr [âi−ai > ε‖a‖1] ≤ δ



  

A Key Technique



  

It’s super unlikely that
every shot will miss the

center of the target!



  

Running in Parallel
● Let’s run d copies of our data structure in parallel with 

one another.
● Each row has its hash function sampled uniformly at 

random from our hash family.
● Each time we increment an item, we perform the 

corresponding increment operation on each row.

w = ⌈e · ε-1⌉

d =
 ??

h₂
h₃

hd

…

27 18 29 18 28 … 45

16 18 3 40 88 … 75

69 31 47 18 5 … 60

...

h₁ 32 41 59 26 53 58…



  

Running in Parallel
● Imagine we call estimate(x) on each of our estimators 

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers 

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 4:

103
Estimator 5:

261



  

Running in Parallel
● Imagine we call estimate(x) on each of our estimators 

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers 

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 5:

261
Estimator 4:

103

Intuition: The smallest 
estimate returned has 
the least “noise,” and 

that’s the best guess for 
the frequency.



  

Let âᵢⱼ be the 
estimate from the 

jth copy of the data 
structure.

 

Our final estimate is
min {âᵢⱼ}

Pr [min { âij }− ai > ε‖a‖1]

= Pr [ ∧
j =1

d
(âij − ai > ε‖a‖1 )]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e− d



  

Finishing Touches
● We now see that

● We want to reach this goal:
 

● So set d = ln δ-1.

Pr [âi−ai > ε‖a‖1] ≤ e− d

Pr [âi−ai > ε‖a‖1] ≤ δ



  

The Count-Min Sketch

h₁
h₂
h₃

hd

…

increment(x):
   for i = 1 … d:
      count[i][h (x)]++ᵢ

estimate(x):
   result = ∞
   for i = 1 … d:
      result = min(result, count[i][h (x)])ᵢ
   return result

32 41 59 26 53 58

27 18 28 19 28 … 45

16 19 3 39 88 … 75

69 31 47 18 5 … 60

...

…



  

The Count-Min Sketch
● Update and query times are Θ(log δ-1).

● That’s the number of replicated copies, and we do O(1) work 
at each.

● Space usage: Θ(ε-1 · log δ-1) counters.
● Each individual estimator has Θ(ε-1) counters, and we run 

Θ(log δ-1) copies in parallel.
● How many bits do you use per counter? Depends on the 

particulars of your problem.
● Provides an estimate to within ε║a║₁ with probability at 

least 1 – δ.
● This can be significantly better than just storing a raw 

frequency count – especially if your goal is to find items 
that appear very frequently.



  

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
add +1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

Count-Min Sketch



  

Major Ideas From Today
● 2-independent hash families are useful when we 

want to keep collisions low.
● A “good” approximation of some quantity should 

have tunable confidence and accuracy parameters.
● Sums of indicator variables are useful for deriving 

expected values of estimators.
● Concentration inequalities like Markov’s 

inequality are useful for showing estimators don’t 
stay too much from their expected values.

● Good estimators can be built from multiple parallel 
copies of weaker estimators.



  

Next Time
● Count Sketches

● An alternative frequency estimator with 
different time/space bounds.

● Cardinality Estimation
● Estimating how many different items you’ve 

seen in a data stream.
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