

Hashing and Sketching
Part One

The Magic of Hash Functions
● Last week, we explored how to reduce the

number of bits used by a data structure.
● In many cases, there are hard limits on how

space-efficient any deterministic algorithm can
be, but randomized algorithms can use
shockingly few bits.

● This week explores how to use hash functions
to seemingly achieve the impossible, as long as
we’re okay with answers that are
approximately correct most of the time.

Outline for Today
● Hash Functions

● Understanding our basic building blocks.
● Frequency Estimation

● Estimating how many times we’ve seen
something.

● Probabilistic Techniques
● Standard but powerful tools for reasoning

about randomized data structures.

Preliminaries: Hash Functions

Hashing in Practice
● Hash functions are used extensively in

programming and software engineering:
● They make hash tables possible: think C++
std::hash, Python’s __hash__, or Java’s
Object.hashCode().

● They’re used in cryptography: SHA-256, HMAC,
etc.

● Question: When we’re in Theoryland, what
do we mean when we say “hash function?”

Hashing in Theoryland
● In Theoryland, a hash function is a

function from some domain called the
universe (typically denoted 𝒰) to some
codomain.

● The codomain is usually a set of the form
[m] = {0, 1, 2, 3, …, m – 1}

h : → [𝒰 m]

Hashing in Theoryland
● Intuition: No matter how clever you are with

designing a specific hash function, that hash
function isn’t random, and so there will be
pathological inputs.
● You can formalize this with the pigeonhole

principle.
● Idea: Rather than finding the One True Hash

Function, we’ll assume we have a collection of
hash functions to pick from, and we’ll choose
which one to use randomly.

h

Families of Hash Functions
● A family of hash functions is a set of ℋ

hash functions with the same domain
and codomain.

● We can then introduce randomness into
our data structures by sampling a
random hash function from ℋ.

● Key Point: The randomness in our data
structures almost always derives from
the random choice of hash functions,
not from the data.

Data is adversarial.
Hash function selection is random.

● Question: What makes a family of hash
functions a “good” family of hash ℋ
functions?

ℋ

 0 1 2 3 4 5 6 7 ... m-1

h

x

Goal: If we pick
h ∈ uniformly at ℋ

random, then h should
distribute elements
uniformly randomly.

y
z

Problem: A hash function
that distributes n elements
uniformly at random over
[m] requires Ω(n log m)
space in the worst case.

Question: Do we actually
need true randomness? Or

can we get away with
something weaker?

 0 1 2 3 4 5 6 7 ... m-1

Distribution Property:
Each element should have

an equal probability of
being placed in each slot.

Independence Property:
Where one element is

placed shouldn’t impact
where a second goes.

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is
uniform over its codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

w
uA family of hash functions is called ℋ 2-independent (or
pairwise independent) if it satisfies the distribution

and independence properties.

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
m This is the same as

if h were a truly
random function.

x
y

For more on hashing outside of Theoryland,
check out this Stack Exchange post.

https://softwareengineering.stackexchange.com/questions/49550/

Time-Out for Announcements!

Problem Set 2
● Problem Set 1 was due at 1:00PM today.

● Need more time? You can use up to two late days to
submit either 24 or 48 hours late.

● Problem Set 2 (Succinct Data Structures) goes
out today. It’s due next Thursday at 1:00PM.
● Dive deeper into succinct rank and select.
● Probe the limits of how far we can compress data

structures.
● Apply the techniques you’ve learned!

● As always, stop by office hours or ping us on Ed
if you have questions!

Back to CS166!

Frequency Estimation

Frequency Estimators
● A frequency estimator is a data structure

supporting the following operations:
● increment(x), which increments the number of

times that x has been seen, and
● estimate(x), which returns an estimate of the

frequency of x.
● This is easy to solve exactly using BSTs or hash

tables, except that we need Ω(n) space simply
to write down everything we’ve incremented.

● Question: Can we solve this problem without
using Ω(n) bits of space?

The Count-Min Sketch

Revisiting the Exact Solution
● In the exact solution to the frequency estimation

problem, we maintained a single counter for each
distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a
counter to each x ∈ . Multiple objects might be 𝒰
assigned to the same counter.

● To increment(x), increment the counter for x.
● To estimate(x), read the value of the counter for x.

11 6 4 7

Our Initial Structure
● Create an array of counters, all initially 0, called count.

It will have w elements for some w we choose later.
● Choose, from a family of 2-independent hash functions

, a uniformly-random hash function ℋ h : → [𝒰 w].
● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].

31 42 59 27 58h

w counters

…

Which
counter?

Some Notation
● Let x₁, x₂, x₃, … denote the list of distinct items whose

frequencies are being stored.
● Let a₁, a₂, a₃, … denote the frequencies of those items.

● e.g. aᵢ is the true number of times xᵢ is seen.
● Let â₁, â₂, â₃, … denote the estimate our data structure

gives for the frequency of each item.
● e.g. âᵢ is our estimate for how many times xᵢ has been seen.
● Important detail: the aᵢ values are not random variables

(data are chosen adversarially), while the âᵢ values are
random variables (they depend on a randomly-sampled hash
function).

● In what follows, imagine we’re querying the frequency of
some specific element xᵢ. We want to analyze âᵢ.

Analyzing our Estimator
● We’re interested in learning more about âᵢ. A good first step

is to work out E[âᵢ].
● âᵢ will be equal to ai, plus some “noise” terms from colliding

elements.
● Each of those elements is very unlikely to collide with us,

though. (There’s a ¹/w chance of a collision for any one other
element.)

● Reasonable guess: E[âi] = ai + ∑
j≠i

a j

w
Frequency of each
other item, scaled

to account for chance
of a collision.

Making Things Formal
● Let’s make this more rigorous.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random
variables as follows:

● The value of âᵢ – aᵢ is then given by

𝟙h(xi)=h(x j)
= { 1 if h(xi) = h(x j)

 0 otherwise

âi−ai = ∑
j≠ i

a j 𝟙h (x i)=h (x j)

E [âi−ai] = E[∑
j≠i

a j 𝟙h(x i)=h(x j)
]

= ∑
j≠i

E[a j 𝟙h(x i)=h(x j)
]

= ∑
j≠i

a jE[𝟙h(x i)=h(x j)
]

= ∑
j≠i

a j

w

≤
‖a‖1

w

Idea: Think of our
element frequencies

a₁, a₂, a₃, … as a vector

a = [a₁, a₂, a₃, …]

The total number of
objects is the sum of
the vector entries.

‖a‖1 = ∑
i

|ai|

This is called the
L₁ norm of a, and is

denoted ║a║₁:

On Expected Values
● We know that E[âᵢ – aᵢ] ≤ ||a||₁ / w. This means that the

expected overestimate is low.
● Claim: This fact, in isolation, is not very useful.
● Below is a probability distribution for a random variable whose

expected value is 9 that never takes values near 9.
● If this is the sort of distribution we get for âᵢ, then our estimator

is not very useful!

0 189

On Expected Values
● We’re looking for a way to say something like the

following:
“Not only is our estimate’s expected value pretty
close to the real value, our estimate has a high

probability of being close to the real value.”
● In other words, if the true frequency is 9, we want the

distribution of our estimate to kinda sorta look like this:

0 189

How Close is Close?
● In some applications, we might be okay overshooting by a larger

amount (e.g. roughly estimating which restaurants people are
visiting).

● In others, it’s really bad if we overestimate by too much (e.g.
polling for an election).

● Idea: Allow the client of the estimator to pick some value ε
between 0 and 1 indicating how close they want to be to the true
value. The closer ε is to 0, the better the approximation we want.

0 189

How Close is Close?
● In some applications, we might be okay overshooting by a larger

amount (e.g. roughly estimating which restaurants people are
visiting).

● In others, it’s really bad if we overestimate by too much (e.g.
polling for an election).

● Idea: Allow the client of the estimator to pick some value ε
between 0 and 1 indicating how close they want to be to the true
value. The closer ε is to 0, the better the approximation we want.

0 189

How Close is Close?
● Our overestimate is related to ||a||₁.
● We’ll formalize how ε works as follows: we’ll say we’re okay

with any estimate that’s within ε||a||₁ of the true value.
● This is okay for high-frequency elements, but not so great

for low-frequency elements. (Why?)
● But that’s okay. In practice, we are most interested in

finding the high-frequency items.

0 189

Making Things Formal
● We know that

● We want to bound this quantity:

● Let’s run the numbers!

0 189

Pr [âi −ai > ε‖a‖1]

E[âi−ai] ≤
‖a‖1

w

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

We don’t know the exact distribution of
this random variable.

Pr [X ≥ c] ≤ E[X]
c .

However, we have a one-sided error:
our estimate can never be lower than the

true value. This means that âᵢ – aᵢ ≥ 0.

Markov’s inequality says that if X is a
nonnegative random variable, then

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

Interpreting this Result
● Here’s what we just proved:

● What does this tell us?

● Increasing w decreases the chance of an overestimate.
Decreasing w increases the chance of an overestimate.

● As the user decreases ε, we have to proportionally
increase w for this bound to tell us anything useful.

● Idea: Choose w = e · ε-1.
● The choice of e is “somewhat” arbitrary in that any

constant will work – but I peeked ahead and there’s a
good reason to choose e here. 😃

Pr [âi − ai > ε‖a‖1] ≤ 1
ε we -1

The Story So Far
● The user chooses a value ε ∈ (0, 1). We pick w = e · ε-1.
● Create an array count of w counters, each initially zero.
● Choose, from a family of 2-independent hash functions

, a uniformly-random hash function ℋ h : → [𝒰 w].
● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].
● With probability at least 1 – ¹/ₑ, the estimate for the

frequency of item xᵢ is within ε · ||a||₁ of the true
frequency.

31 41 59 26 58h

w = O(ε -1) counters

…

The Story So Far
● We now have a simple estimator where

● This means we have a decent chance of getting an
estimate we’re happy with.

● Problem: We probably want to be more confident
than this.
● In some applications, maybe it’s okay to have a 63%

success rate.
● In others (say, election polling) we’ll need to be a lot more

confident than this.
● Question: How do you define “confident enough”?

Pr [âi− ai > ε ‖a‖1] ≤ e−1

The Parameter δ
● The user already can select a parameter ε tuning the accuracy

of the estimator: how close we want to be to the true value.
● Let’s have them also select a parameter δ tuning the

confidence of the estimator: how likely it is that we achieve
this goal.

● δ ranges from 0 to 1. Lower δ means a higher chance of getting
a good estimate.

0 189

Our Goal
● Right now, we have this statement:

● We want to get to this one:

● How might we achieve this?

Pr [âi−ai > ε‖a‖1] ≤ e−1

Pr [âi−ai > ε‖a‖1] ≤ δ

A Key Technique

It’s super unlikely that
every shot will miss the

center of the target!

Running in Parallel
● Let’s run d copies of our data structure in parallel with

one another.
● Each row has its hash function sampled uniformly at

random from our hash family.
● Each time we increment an item, we perform the

corresponding increment operation on each row.

w = ⌈e · ε-1⌉

d =
 ??

h₂
h₃

hd

…

27 18 29 18 28 … 45

16 18 3 40 88 … 75

69 31 47 18 5 … 60

...

h₁ 32 41 59 26 53 58…

Running in Parallel
● Imagine we call estimate(x) on each of our estimators

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 4:

103
Estimator 5:

261

Running in Parallel
● Imagine we call estimate(x) on each of our estimators

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 5:

261
Estimator 4:

103

Intuition: The smallest
estimate returned has
the least “noise,” and

that’s the best guess for
the frequency.

Let âᵢⱼ be the
estimate from the

jth copy of the data
structure.

Our final estimate is
min {âᵢⱼ}

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e− d

Finishing Touches
● We now see that

● We want to reach this goal:

● So set d = ln δ-1.

Pr [âi−ai > ε‖a‖1] ≤ e− d

Pr [âi−ai > ε‖a‖1] ≤ δ

The Count-Min Sketch

h₁
h₂
h₃

hd

…

increment(x):
 for i = 1 … d:
 count[i][h (x)]++ᵢ

estimate(x):
 result = ∞
 for i = 1 … d:
 result = min(result, count[i][h (x)])ᵢ
 return result

32 41 59 26 53 58

27 18 28 19 28 … 45

16 19 3 39 88 … 75

69 31 47 18 5 … 60

...

…

The Count-Min Sketch
● Update and query times are Θ(log δ-1).

● That’s the number of replicated copies, and we do O(1) work
at each.

● Space usage: Θ(ε-1 · log δ-1) counters.
● Each individual estimator has Θ(ε-1) counters, and we run

Θ(log δ-1) copies in parallel.
● How many bits do you use per counter? Depends on the

particulars of your problem.
● Provides an estimate to within ε║a║₁ with probability at

least 1 – δ.
● This can be significantly better than just storing a raw

frequency count – especially if your goal is to find items
that appear very frequently.

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
add +1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

Count-Min Sketch

Major Ideas From Today
● 2-independent hash families are useful when we

want to keep collisions low.
● A “good” approximation of some quantity should

have tunable confidence and accuracy parameters.
● Sums of indicator variables are useful for deriving

expected values of estimators.
● Concentration inequalities like Markov’s

inequality are useful for showing estimators don’t
stay too much from their expected values.

● Good estimators can be built from multiple parallel
copies of weaker estimators.

Next Time
● Count Sketches

● An alternative frequency estimator with
different time/space bounds.

● Cardinality Estimation
● Estimating how many different items you’ve

seen in a data stream.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

